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Note 

Systematic Generation of Linear Graphs- 
Check and Extension of the List of 

Uhlenbeck and Ford 

1. INTRODUCTION 

Consider the problem of calculating the partition function of a system of p par- 
ticles that interact via a pair potential. As is shown in every textbook on statistical 
mechanics [l], this problem requires the evaluation of a number of integrals each 
of which is in one-to-one correspondence with a linear graph with p points. 

If one wants to obtain an exact result for the partition function one has to 
evaluate all these integrals analytically. This requires, first of all, a complete list of 
the corresponding graphs and their invariance groups. The exact calculation of the 
partition function and the derivation of the resulting equation of state for clusters 
of hard particles [2] was the motivation for developing an algorithm to generate 
a list of free graphs. The related virial expansion for the infinite system is discussed 
in Ref. [S]. 

2. THE ALGORITHM 

Linear graphs may be represented in several ways; here it is done by assigning 
a number to each graph. The binary representation of this number was constructed 
in the following way: 

(i) First the points of the graph are labelled by 1,2, . . . . p. 

(ii) All possible connections (bonds) (i, j) of two points i and j 
are numbered according to the sequence (1,2), (1, 3), (1,4), . . . . (2, 3), 
(2, 4), . . . . (p - 1, p). These numbers range from 0 to p(p - 1)/2 - 1. 

(iii) If the points i and j are connected by a bond the bit assigned 
to the number of the pair (i, j) is set equal to 1; if they are discon- 
nected it is set equal to 0. (1) 

The problem with such a representation is that the resulting numbers depend on 
the way the points had been labelled in step (i) of scheme (1). Starting from 
different labelings of the points one gets two different representing numbers for one 
and the same graph. To decide whether a given number represents a given graph 
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it is necessary to consider all possible permutations in step (i) and to compare the 
resulting numbers with the given one. The drawback of this strategy is that p! 
permutations have to be performed before two different numbers can be identified 
as representatives of different graphs. 

As the permutations play a crucial role in the whole algorithm the list of all 
permutations is stored in an array for fast access in a form that allows to perform 
these permutations in a convenient way. 

The list of all graphs with a given number of points is constructed successively. 
We start from the list of all graphs with p points and one bond, which contains 
only one graph. For this graph the list of all permutations, which leave the graph 
invariant is constructed “by hand.” To save some computer memory these lists are 
stored on disk when they are not needed. 

The method to construct the list of all graphs with p points and k bonds (k-list) 
from the list of all graphs of p points and (k - 1) bonds ((k - 1)-list) together with 
the list of all permutations which leave each of the graphs in the (k - 1)-list 
invariant is the following: 

For each graph in the (k - 1)-list we construct a new graph by adding one bond. 
This new bond is constructed in the way that it has the highest possible value 
according to step (ii) of scheme (1). Then we go through a loop of all permutations 
of the points. We check whether the graph obtained by the permutation is already 
in the k-list. Simultaneously we exclude from further consideration all additional 
new graphs, which arise from applying those permutations that leave the original 
graph in the (k - 1 )-list invariant. If a new graph is found in the new k-list we count 
how often this graph has been found. This number is the order of the subgroup of 
all permutations which leaves the graph invariant (Ggraph c S,). For the problem of 
finding the partition function described in the Introduction it is necessary to know 
how many representations of one fixed graph exist which are equivalent with 
respect to permutations of the points. Let us denote this number by wgraph; then the 
following relation holds. 

P! 
w’b”aph 

=- 
1 Ggraph 1 

This can be proven by group theoretical arguments. We start from a fixed represen- 
tation of a graph and generate by means of the permutational group S, a set of 
equivalent representations. The first step consists of determining the subgroup 
G graph of S, that leaves the fixed representation invariant. Thus a coset decomposi- 
tion of S, with respect to Ggraph uniquely fixes this set of equivalent representations 
and the order of this set of is the weight wgraph of the graph. 

If one takes into account that the representing numbers of the graphs found in 
this way form a monotonic decreasing series the expense of finding a new graph in 
the k-list can be decreased considerably. 

If the whole (k - 1)-list is exhausted we arrive at a complete k-list of graphs. 
Increasing k by one until the value p(p - 1)/2 is reached gives the whole list of 
graphs for a given number p of points. 
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3. EVALUATION OF THE LIST 

We used the lists derived in Section 2 to check systematically the tables given in 
[l]. Apart from the errors given in [3] no further errors were discovered. Let us 
use the notation of appendix 2 of Cl]: 

Np,k = number of labelled graphs (connected or disconnected) 

C,,, = number of labelled connected graphs 

S,,, = number of labelled stars 

rcp,k = number of free graphs (connected or disconnected) 

yp,k = number of free connected graphs 

g‘P.k= number of free stars. 

(3) 

Here p is the number of points and k is the number of bonds in the graph. A graph 
is said to be free if all point are equivalent, and if all points are distinguished from 
each other we speak of a labelled graph. If the graph can be separated into two 
or more groups so that there is no line joining either part the graph is said to be 
disconnected; otherwise it is connected. If for one graph it not possible to find a 
point with the property that the graph becomes disconnected if all connections to 
this point are cut the graph is called a star. A polygon is a simple example for a 
star. It is straightforward from these definitions to determine the numbers in list (3) 
from the list of graphs. The basis of the method is the notion of the graph matrix 
m(graph) which is constructed infollowing way. 

mti(graph) = mji(graph) = 
if the connection (i, j) is present 
if the connection (i, j) is not present. (4) 

The diagonal elements mii(graph) are chosen such that the sum in each row 
vanishes. If one graph consists of n disjoint parts the rank of the graph matrix 
is p-n. All principal minors D(graph) of order p- 1 are equal and are called 
graph complexity (c.f., Ref. [ 11). If this graph complexity is zero the graph is not 
connected. 

Our lists of the graphs have been used to check the values for the graph 
complexities given in [l] and to extend the tables to graphs with eight points (see 
Table I). 

4. CONCLUDING REMARKS 

The list of all linear graphs with up to eight points has been generated. As the 
algorithm to generate the graphs with p points involves, in some way, p! operations 
to be performed on every graph with p - 1 points, the expense of computer time 
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TABLE I 

Extension of the Table in [l] to Graphs of 8 Points 

Np,k c ph %k 
1 0 0 

28 0 0 

378 0 0 
3276 0 0 

20475 0 0 

98280 0 0 
376740 0 0 

1184040 262144 0 
3108105 1436568 2520 
6906900 4483360 84000 

13123110 10230360 835800 
21474180 18602136 3940440 
30421755 28044072 10908688 
37442160 35804384 20317528 
40116600 39183840 28032840 
37442160 37007656 30526776 
30421755 30258935 27217743 
21474180 21426300 20285244 
13123110 13112470 12777142 
6906900 6905220 6830740 
3108105 3107937 3096177 
1184040 1184032 1182856 
376740 376740 376684 
98280 98280 98280 
20475 20475 20475 
3276 3276 3276 

378 378 378 
28 28 28 

1 1 1 

rp,k 
0 
0 

0 
0 

0 
0 

0 

23 
89 

s 
1 
1 
2 
5 

11 
24 
56 

115 
221 
402 
663 
980 

1312 
1557 
1646 
1557 
1312 
980 
663 
402 
221 
115 
56 
24 
11 
5 
2 
1 
1 

486 
814 

1169 
1454 
1579 
1515 
1290 
970 
658 
400 
220 
114 
56 
24 
11 
5 
2 
1 
1 

w 
0 
0 
0 
0 
0 
0 

0 

0 
1 
6 

40 
161 
429 
780 

1076 
1197 
1114 
885 
622 
386 
215 
112 
55 
24 
11 
5 
2 
1 
1 

Note. The notation is explained in list (3). 

increases drastically with the number of points. For instance, up to seven points it 
is no real effort for a standard personal computer to generate the list, whereas for 
eight points a rather powerful workstation had to be used. 
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